

EGC221: Digital Logic Lab

Experiment #4

Combinational Logic Circuit Reduction

Student's Name:	Reg. no.:
Student's Name:	Reg. no.:
Semester: Spring 2018	Date: 16 October 2018

Assessment:

Assessment Point	Weight	Grade
Methodology and correctness of results		
Discussion of results		
Participation		
Assessment Points' Grade:		

Comments:	

Experiment #4:

Circuit Reduction Techniques

Objectives:

The objectives of this experiment are to:

- 1. Obtain simplified expressions in the form of Sum-of-Products,
- 2. Simplify a logic circuit using Boolean algebra.

Procedure:

Use Logisim to solve the following exercises.

Exercise 1:

(a) Derive the logic expression for the circuit illustrated in Figure 1.

Figure 1. Basic Logic Circuit with four inputs A, B, C, and D.

Logic Expression:	X =
-------------------	-----

Note: In MS Word, you can type **2295** *Alt x* to generate \oplus symbol.

(b) Analyze the circuit in Figure 1 and **complete** Table 1 below.

Δ	B	C	П		, ,		
~	D	C					
0	0	0	0				
0	0	0	1				
0	0	1	0				
0	0	1	1				
0	1	0	0				
0	1	0	1				
0	1	1	0				
0	1	1	1				
1	0	0	0				
1	0	0	1				
1	0	1	0				
1	0	1	1				
1	1	0	0				
1	1	0	1				
1	1	1	0				
1	1	1	1				

Table 1. Basic Logic Circuit with four inputs A, B, C, and D.

(c) Use Logisim to simulate the non-simplified circuit. Complete Figure 2 and Table 2.

[Insert Logisim circuit here]

Figure 2. Non-simplified circuit simulation

А	В	С	D	Х
0	0	0	0	
0	0	0	1	
0	0	1	0	
0	0	1	1	
0	1	0	0	
0	1	0	1	
0	1	1	0	
0	1	1	1	
1	0	0	0	
1	0	0	1	
1	0	1	0	
1	0	1	1	
1	1	0	0	
1	1	0	1	
1	1	1	0	
1	1	1	1	

Table 2. Non-simplified circuit truth table based on simulation

(d) Use the results from **Table 2** to derive the Sum of Min Terms and Standard Sumof-Products expression for X.

Sum of Min-term Expression:	X =
SoP Expression:	X =

(e) Use Logisim to simulate the non-simplified Sum Of Products circuit. Complete **Figure 3** and **Table 3**.

[Insert Logisim circuit here]

Figure 3. Non-simplified SOP circuit simulation

А	В	С	D	Х
0	0	0	0	
0	0	0	1	
0	0	1	0	
0	0	1	1	
0	1	0	0	
0	1	0	1	
0	1	1	0	
0	1	1	1	
1	0	0	0	
1	0	0	1	
1	0	1	0	
1	0	1	1	
1	1	0	0	
1	1	0	1	
1	1	1	0	
1	1	1	1	

Table 3. Non-simplified SOP circuit truth table based on simulation

(f) Use Boolean algebra to simplify X, from part (e). See basic Boolean identities (Postulate and Theorems) and identify line-by-line Simplify X and verify the Sumof-Products expression for X.

(g) Use Logisim to simulate the simplified circuit. Complete **Figure 4** and **Table 4**. [Insert Logisim circuit here]

Figure 4. Simplified circuit simulation

Α	В	С	D	Х
0	0	0	0	
0	0	0	1	
0	0	1	0	
0	0	1	1	
0	1	0	0	
0	1	0	1	
0	1	1	0	
0	1	1	1	
1	0	0	0	
1	0	0	1	
1	0	1	0	
1	0	1	1	
1	1	0	0	
1	1	0	1	
1	1	1	0	
1	1	1	1	

Table 4. Simplified circuit truth table based on simulation

(h) Verify the operation of your simplified circuit using a Digital I/O Module, DC Power Supply, Breadboard, ICs, and Wires. Complete **Figure 5** and **Table 5**.

[Insert Photo of circuit here]

А	В	С	D	Х
0	0	0	0	
0	0	0	1	
0	0	1	0	
0	0	1	1	
0	1	0	0	
0	1	0	1	
0	1	1	0	
0	1	1	1	
1	0	0	0	
1	0	0	1	
1	0	1	0	
1	0	1	1	
1	1	0	0	
1	1	0	1	
1	1	1	0	
1	1	1	1	

Table 5. Simplified circuit truth table based on build

(i) Conclusions (discussion of results):